
Linear Models in 

Medical Imaging

John Kornak

MI square

February 23, 2010



Acknowledgement / 

Disclaimer

Many of the slides in this lecture have 

been adapted from slides available in 

talks available on the SPM web site. 



Overview

• Motivation

• Linear model formulation

• Region of interest analyses

• Pixel/voxel based analyses

• Multiple comparisons for images

• Bayesian image analysis methods



Motivation

• Imaging data – statistical methods to look 
for “regional effects”

• Tissue differences between groups or 
over time – VBM, TBM (voxel/tensor-based 
morphometry)

• PET (positron emmission tomography), 
fMRI (functional MRI) – determine 
“activation” in the brain due to thought, 
stimulus or task

• Diffusion (DWI, DTI, tractography), Bone 
mineral density etc. etc.



FMRI Data: 

Set of Volumes (over time) or

Set of Time-Series (over space)

Serial 

Snapshots of 

Volunteers 

brain

Active  

Passive 

Baseline

Time



Software etc.
SPM – PET, fMRI, VBM and TBM, EEG/MEG

(http://www.fil.ion.ucl.uk/spm/ needs Matlab)

FSL – fMRI primarily + DTI 

(http://www.fmrib.ox.ac.uk/fsl/)

R – AnalyzeFMRI package + linear models in 

general (http://www.r-project.org/ and then go 

to your nearest CRAN mirror) 

Also, check “Venables and Ripley” Splus 

book + many R books (see R web site) + 

online tutorials

http://www.fil.ion.ucl.uk/spm/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/


Challenges

• Generating suitable (statistical) 

imaging models

• Dealing with highly multivariate 

responses (curse of dimensionality)

• Defining imaging “hypotheses”

• Creating computationally efficient 

analysis procedures



Aims of Statistical Modeling

• Summarize data

• Estimation: point and interval estimates

• Inference: hypotheses / relationships

• Prediction
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Statistical Modeling Strategy

• Propose a model for the data

• Fit the model

• Assess the model’s adequacy

• Fit other plausible models

• Compare all fitted models

• Interpret the best model



Statistical Models: Definitions

• Univariate response variable  yi (for exp. unit i)

• Covariates  (xi1, xi2,..., xik) =       

(variables of interest and “nuisance” variables)

• Data is:                          , n experimental units

Continuous covariates: e.g. age, blood pressure 

etc., (random or controlled)

Factors: e.g. diagnosis, gender, drinking level 

(low, medium, high) etc.
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A simple linear model might take the form:

2~ (0, ),     . . .   1,...,i N i i d i n

, , ,...i mean i age age i gender gender i diagnosis diagnosis iy x x x

e.g.

i.i.d. = independently and identically distributed

The (General) Linear Model



The (General) Linear Model
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For univariate data:

or in matrix notation

This can be extended to a multivariate response
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is a set of unknown parameters



Ex. Hippocampal Volume

HCV ~ Age + Diagnosis 

(Wilkinson notation)

Diagnosis can be

normal control 

(NC) or 

Alzheimer’s 

disease (AD)



Ex. Hippocampal Volume

HCV ~ Age + Diagnosis + Age*Diagnosis

(Wilkinson notation)

Diagnosis can be

normal control 

(NC) or 

Alzheimer’s 

disease (AD)



Structural T1 weighted MRI’s 

Hippocampal volumes manually traced

Volume measure = response for each subject

Disease status encoded 1 for AD and 0 for NC

(the         term).diagx
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Linear models can be more general

- only needs to be linear in the parameters:

We can have:
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Estimation
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Minimize squared error (Least Squares Error)

= Maximum Likelihood Estimation 
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Inference – Model Comparison

Take linear model

And add constraint

this defines a new model that is a 

simplification of the previous one

A c
  y X

T



Inference – Model Comparison

E.g., cf. model

to simplification with

i.e. 
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And what about               ? 
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Are 2 different conditions equivalent?

E.g. is the activation effect: reading a 

word vs imagining the object equal?



Definition: Linear model nested in 

another if 1st model can be obtained by 

linear constraint on the 2nd

Nesting tree:

age + gender

age gender

null



F-test for General Linear 

Hypothesis
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p denotes the number of model parameters

n denotes the number of data points

Dev = Deviance = sum of squares of residuals

Tests ratio of variances
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FMRI Data: 

Set of Volumes (over time) or

Set of Time-Series (over space)
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Snapshots of 
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realignment &

motion

correction

smoothing

normalisation

Linear Model
model fitting

statistic image

Corrected thresholds & p-values

image data

parameter

estimates

design

matrix

anatomical

reference

kernel

Statistical

Parametric Map

(test statistics)

Thresholding &

Random Field 

Theory



Estimation
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the data
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Parameter Estimates

• Same model for all voxels

• Different parameters for each voxel
beta_0001.img

beta_0002.img

beta_0003.img
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SPM View

1∙ +2∙ +3∙≈ 1∙ +2∙ +3∙

y ≈   X
T
β

We trust: Long series with 

large effects and small error
Note:

1

2

3



Spatial Modeling



Spatial Hypotheses

Question - how do we extend from standard univariate 

hypotheses to answering spatially motivated questions?

Not easy - curse of dimensionality (millions of voxels)

A B
A

B
1D

2D

in 1D it makes sense to infer A is less than B, but what 

is the equivalent in 2D?



Spatial Testing Solutions

• Summarize the image into one dimensional 

quantities for testing (e.g. region of interest 

analysis)

• Consider the overall test as a combination of 

individual voxel tests (voxel based analysis)

• Perform shape/object analysis on objects 

defined via landmarks 

• Build Bayesian image analysis models
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Voxel based analysis

Each voxel obtains a test statistic from the 

linear model, e.g. t or F

Forms statistical maps of the statistics
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• Null Hypothesis H0

• Test statistic T

– t observed realization of T

• -level 

– Acceptable false positive risk

– Level = Pr( T>u | H0 )

– Threshold u controls false positive risk at 

level 

Hypothesis Testing

u

Null Distribution of T



Multiple Comparisons Problem

Which of 100,000 voxels are 

significant?

– =0.05 5,000 false positive voxels



Assessing Statistic Images

Where’s the signal or change?

t > 0.5t > 3.5t > 5.5

High Threshold Med. Threshold Low Threshold

Good Specificity

Poor Power

(risk of false 

negatives)

Poor Specificity

(risk of false 

positives)

Good Power

How can we determine a sensible threshold level?



Multiple Comparison Solutions:

Measuring False Positives

• Familywise Error Rate (FWER)

– Familywise Error
• Existence of one or more false positives

• False Discovery Rate (FDR)

– FDR = E(V/R)

– R voxels declared active, V falsely so

Realized false discovery rate: V/R



Independent Voxels Spatially Correlated Voxels

Bonferroni is too conservative for brain images

Bonferroni Correction
FWE, α, for N independent voxels is α = Nv (v = voxel-

wise error rate) 

To control FWE set v = α / N



FWER MCP Solutions:

Random Field Theory

• Euler Characteristic u

– Topological Measure

• #blobs - #holes

– At high thresholds,

just counts blobs

– FWER = Pr(Max voxel u | Ho)

= Pr(One or more blobs | Ho)

Pr( u 1 | Ho)

E( u | Ho)

Random Field

Suprathreshold Sets

Threshold

No holes

Never 

more than 

1 blob

See description at http://imaging.mrc-cbu.cam.ac.uk/imaging/PrinciplesRandomFields

http://imaging.mrc-cbu.cam.ac.uk/imaging/PrinciplesRandomFields
http://imaging.mrc-cbu.cam.ac.uk/imaging/PrinciplesRandomFields
http://imaging.mrc-cbu.cam.ac.uk/imaging/PrinciplesRandomFields


Random Field Theory 

Limitations

• Multivariate normality (Gaussianity)
– Virtually impossible to check

• Sufficient smoothness
– FWHM smoothness 3-4 voxel size 

• Smoothness estimation
– Estimate is biased when images not 

sufficiently smooth 

• Several layers of approximations

Lattice Image
Data

Continuous Random 
Field



Multiple Comparisons Solutions:

Measuring False Positives
• Familywise Error Rate (FWER)

– Familywise Error

• Existence of one or more false positives

– FWER is probability of familywise error

• False Discovery Rate (FDR)

– FDR = E(V/R)

– R voxels declared active, V falsely so

• Realized false discovery rate: V/R



False Discovery Rate
• For any threshold, all voxels can be cross-

classified:

• Realized FDR

rFDR = V0R /(V1R+V0R) = V0R /NR

– If  NR = 0, rFDR = 0

• But only can observe NR, don’t know V1R & V0R

– We control the expected rFDR 

FDR = E(rFDR)

Accept Null Reject Null

Null True V0A V0R

Null False V1A V1R

NA NR



False Discovery Rate

Illustration:

Signal

Signal+Noise

Noise



FWE

6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% 8.7%

Control of Familywise Error Rate at 10%

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5%

Control of Per Comparison Rate at 10%

Percentage of Null Pixels that are False Positives

Control of False Discovery Rate at 10%

Occurrence of Familywise Error

Percentage of Observed “Above Threshold” Pixels that are False Positives



Benjamini & Hochberg

Procedure
• Select desired limit q on FDR

• Order p-values, p(1) p(2) ... p(V)

• Let r be largest i such that

• Reject all hypotheses 
corresponding to
p(1), ... , p(r)

p(i) i/V q/c(V)
p(i)

i/V

i/V q/c(V)
p
-v

a
lu

e

0 1

0
1

Journal of the Royal 

Statistical Society – Series B

(1995) 57:289-300

NB, no spatial consideration



Also, Non-Parametric 

Testing

• If H0 is true then time order irrelevant 

(if noise really iid)

• Therefore permute the timepoints 

and obtain test statistics

• If true test statistic is extreme 

compared to others then reject H0



Types of Spatial Inference

• Individual voxel level

• Cluster level

• Set level

• Bayesian model based



Voxel-level Inference

• Retain voxels above -level threshold u

• Gives best spatial specificity

– H0 at a single voxel can be rejected

Significant

Voxels

space

u

No significant 

Voxels



Cluster-level Inference

• Two step-process

– Define clusters by arbitrary threshold uclus

– Retain clusters larger than -level 

threshold k

Cluster not 

significant 

uclus

space

Cluster

significantk k



• Typically better sensitivity

• Worse spatial specificity

– The null hyp. of entire cluster is rejected

– Only means that one or more of voxels 
in cluster active

Cluster-level Inference

Cluster not 

significant 

uclus

space

Cluster

significantk k



Set-level Inference

• Count number of blobs c 

– Minimum blob size k

• Worst spatial specificity

– Only can reject global null hypothesis

uclus

space

Here c = 1; only 1 cluster larger than k

k k
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A flexible Bayesian Approach

• Model the form of activity

• Provides an “adaptive thresholding” 

approach

space

Active voxels



Bayesian Model

y zx
y = data, parameter estimates of statistics

z = binary activation map – modeled as a MRF

x = activation level field – modeled as a MRF

= residual error

MRF = Markov Random Field (similar random 

field but defined on a lattice)



Model Illustration

z = 0 z = 1              z = 0

x

zx + 



Model Illustration

z = 0 z = 1              z = 0

x

zx fit



y                                 x                                  z

zx          +      



Other Topics and Omissions

• Hemodynamic response function

• Multiple subjects (random and mixed 
effects models)

• PCA, ICA

• Multivariate analysis with variogram 
modeling

• Space-time modeling



Plug

Spring lecture series:

“Statistics for Radiology and Biomedical 

Imaging” - China Basin Landing Classroom 

- Spring Quarter

This will probably run again in 2011


